[1]Lobstein T, Jackson-Leach R, Moodie ML, et al. Child and adolescent obesity: part of a bigger picture. The Lancet, 2015, 385(9986): 2510-2520 [2]Reilly JJ, El-Hamdouchi A, Diouf A, et al. Determining the worldwide prevalence of obesity. The Lancet, 2018, 391(10132): 1773-1774 [3]耿琛琛, 夏婧, 闻德亮. 儿童肥胖并发症. 中华实用儿科临床杂志, 2014, 29(7): 544-547 [4]Jia P, Li M, Xue H, et al. School environment and policies, child eating behavior and overweight/obesity in urban China: the childhood obesity study in China megacities. Int J Obes (Lond), 2017, 41(5): 813-819 [5]Woo Baidal JA, Locks LM, Cheng ER, et al. Risk factors for childhood obesity in the first 1, 000 days: a systematic review. Am J Prev Med, 2016, 50(6): 761-779 [6]周婷, 王婉宜, 孙晓蒙, 等. 中国7~18岁儿童青少年超重肥胖危险因素meta分析. 中国公共卫生, 2016, 32(10): 1444-1448 [7]Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol, 2015, 30(7): 543-552 [8]MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res, 2016, 45(D1): D896-D901 [9]Ding EL, Hu FB. Determining origins and causes of childhood obesity via Mendelian randomization analysis. PLoS Med, 2008, 5(3): e65 [10]Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet, 2012, 44(5): 526-531 [11]Horikoshi M, Beaumont RN, Day FR, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538(7624): 248-252 [12]Marín-Martínez F, Sánchez-Meca J. Weighting by inverse variance or by sample size in random-effects meta-analysis. Educ Psychol Meas, 2010, 70(1): 56-73 [13]Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314 [14]Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525 [15]Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife, 2018, 7, pii: e34408 [16]Liu J, Zhou H, Zhang Y, et al. Docosapentaenoic acid and lung cancer risk: A Mendelian randomization study. Cancer Med, 2019, 8(4): 1817-1825 [17]Flegal KM, Wei R, Ogden C. Weight-for-stature compared with body mass index-for-age growth charts for the United States from the Centers for Disease Control and Prevention. Am J Clin Nutr, 2002, 75(4): 761-766 [18]Rugholm S, Baker JL, Olsen LW, et al. Stability of the association between birth weight and childhood overweight during the development of the obesity epidemic. Obes Res, 2005, 13(12): 2187-2194 [19]Ye R, Pei L, Ren A, et al. Birth weight, maternal body mass index, and early childhood growth: a prospective birth cohort study in China. J Epidemiol, 2010, 20(6): 421-428 [20]Schellong K, Schulz S, Harder T, et al. Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643, 902 persons from 66 studies and 26 countries globally. PLoS One, 2012, 7(10): e47776 [21]Zhang X, Liu E, Tian Z, et al. High birth weight and overweight or obesity among Chinese children 3-6 years old. Prev Med, 2009, 49(2-3): 172-178 [22]Richmond RC, Smith GD, Ness AR, et al. Assessing causality in the association between child adiposity and physical activity levels: a Mendelian randomization analysis. PLoS Med, 2014, 11(3): e1001618 [23]Censin JC, Nowak C, Cooper N, et al. Childhood adiposity and risk of type 1 diabetes: A Mendelian randomization study. PLoS Med, 2017, 14(8): e1002362 [24]秦雪英, 陈大方, 胡永华. 孟德尔随机化方法在流行病学病因推断中的应用. 中华流行病学杂志, 2006(7): 630-633 [25]申亚男. 基于多个遗传变异的两样本孟德尔随机化法在因果关联研究中的应用. 山西医科大学, 2018 |